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Abstract

The shock-layer theory is applied to counter-current liquid chromatography, in the single-component case. This
mode] uses a Langmuir isotherm to account for nonlinear effects, a finite axial dispersion coefficient and a linear
driving force (LDF) kinetics to account for the nonideal effects, e.g., the axial dispersion and the mass transfer
resistance. The shock-layer velocity and its thickness are explicitly formulated in closed forms. Based on these
expressions, the optimum velocities of the solid and liquid phases are derived for minimum shock-layer thickness.
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Thermodynamic parameters

1. Introduction

Continuous separation processes enjoy enorm-
ous advantages over classical batch ones for all
types of industrial applications. Accordingly,
counter-current chromatography and its most
practical implementation, simulated moving bed
separation (SMB), are topics of great current
attention in the separation sciences [1-4].

The development of new separation methods
using SMB requires an accurate modeling of this
process. It has been reported that the optimum
flow-rates of the feed and the solvent observed in
SMB are very sharp and cannot be found simply

* Corresponding author. Address for correspondence: De-
partment of Chemistry, University of Tennessee, Knoxville,
TN 37996-1600, USA.

through a series of trials and errors, except in the
simpler cases, when the selectivity, @, is very
large compared to 1 [2,5]. Often, the empirical
search of these optima would not even converge
[5]. By contrast, an advanced knowledge of
approximate values of the optimum conditions
would allow a rapid fine-tuning of the parameters
of the separation. Even in the cases in which the
empirical approach would eventually converge,
considerable savings in time and wasted chemi-
cals are achieved through the use of initial values
calculated from a suitable model. This justifies
theoretical investigations aiming at the improve-
ment of our understanding of counter-current
chromatography as well as of the SMB process.
In a previous study [4], we have discussed the
solution of the ideal model in counter-current
chromatography in the case of a single com-
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ponent. The advantage of the ideal model [3] is
that it focusses attention on the influence of the
thermodynamics of phase equilibrium on the
behavior of the band and the general shape of its
profile. One of the significant results of our work
[4] is the existence of a range of experimental
conditions under which the column can be
flooded by the feed.

Actual columns have a finite efficiency, how-
ever. The concentration shocks predicted by the
ideal model never take place. They are eroded
by the dispersive effects of the axial dispersion in
the liquid phase and of the resistance to mass
transfer across the column. Under conditions of
strong nonlinear behavior, these shocks are re-
placed by shock layers [6]. The purpose of the
present study is the extension of the shock-layer
theory of Rhee et al. [6] and Rhee and Amun-
dson [7,8] to the case of counter-current chroma-
tography. The advantages of this approach are its
great simplicity, the fact that, in other modes of
chromatography [3,9-11], it gives a closed-form
equation for the shock-layer thickness, and that
values of the optimum velocity for minimum
shock-layer thickness derived from these equa-
tions are in good agreement with experimental
results [9]. Note, however, that this theory is
valid only when the column efficiency is large
enough for the product St- Pe to be very large
[3,7]. This condition may not be as easily verified
in SMB as it is in other modes or implementa-
tions of chromatography because experience
shows that short columns packed with coarse
particles and having a rather low efficiency are
sufficient to achieve most separations. On the
other hand, the migration distance of a front in
SMB can be extremely long. Therefore, the
extension of the results obtained for counter-
current chromatography to the SMB case may
not be straightforward. Even if it were so, how-
ever, the results would provide an improved
understanding of the nature of the phenomena
involved in this new process.

The goal of this paper is to provide an analysis
of the shock-layer profile in counter-current
chromatography and to determine the ex-
perimental conditions allowing the formation of
the shock-layer of minimum thickness. This will

provide useful guidelines for the improvement of
separation performance and, eventually; for the
optimization of the experimental conditions in
separation systems based on the principle of
counter-current chromatography, especially in
the case of SMB.

2. Theory

The shock-layer theory requires some minor
adjustments for its application to counter-current
chromatography. When this is done, it is easy to
derive the equation giving the shock-layer thick-
ness as a function of the experimental conditions
and to determine the value of these parameters
for which it is minimal.

2.1. The model of counter-current liquid
chromatography

Mass-balance equation

Because of the movement of the solid phase,
an additional convective term is required in this
equation [4]. It becomes

aC  aC ? 3’C 9
W+ua—Fv—a%—DL—é—zy+F—a%=0 (1)
where C and g are the concentrations in the
liquid- and solid phase, respectively, at time ¢ and
position z. D; is the axial dispersion coefficient,
u and v are the velocities of the liquid- and solid
phase, respectively, F=(1— €)/e is the phase
ratio, and € is the total column porosity.

Mass transfer kinetics

The overall mass balance in the particle is
represented by the solid-film linear driving force
(LDF) model [3] for the solid phase:

99 99 s
ot vaz_k(q q) (2)

where k is the lumped mass transfer rate coeffi-
cient in the particle. When k = =, the two phases
are constantly in equilibrium.
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Adsorption isotherm
We use in this study the Langmuir adsorption
isotherm model

C
¢ =fO=T15c )

-where g* is the solid-phase concentration in
equilibrium with the liquid-phase concentration
C. The parameters a and b are numerical co-
efficients.

Equations of the model
Egs. 1 and 2 can be rewritten in dimensionless
form as

9 C_ppta LIC poa
ar  ox ox  Pe gx? or 4
2 g% _ sufi0)-q) s
with the dimensionless parameters
r=ut/L (6a)
x=z/L (6b)
B=viu (6¢)
Pe = %L: (6d)
St= KL (6e)
24

where L is the column length, and Pe and St are
the Peclet and Stanton number, respectively.
Because, from the hydrodynamic point of view,
the relevant velocity in counter-current chroma-
tography is the velocity of the liquid relative to
the solid particles, it might be more appropriate
to use u+v=(1+ Bu in the definition of the
Peclet and Stanton numbers. However, this does
not cause any serious change since the coefficient
1+ B is constant during any separation run
considered. For this reason, we have decided to
stick with the symbol definitions which are con-
ventional in the field [1,2].

Initial and boundary conditions
The shock-layer profile is obtained for the
classical initial and boundary conditions of the

breakthrough profile. The column is initially
filled with a solution of concentration C, in
equilibrium with the solid phase. At the time
origin, this solution is abruptly replaced by
another one having concentration C,. So, the
conditions are

Cr=0x)=C, (7a)
Cirx=0)=C, (7b)

Equilibrium is considered between the two
phases, so the corresponding conditions for the
solid phase are

q(r=0x) =f(C,), (7¢)
q(rx =0)=f(C)) (7d)

Because in counter-current chromatography the
front may move either in the direction of the
liquid phase or in that of the solid phase, we
must consider a column extending from z = —L
to z = +L, with the feed being injected at the
center of the column (z =0).

Shock-layer velocity

The shock-layer profile is an asymptotic solu-
tion [3,6]. We assume that the column is long
enough to permit the development of a quasi-
steady-state profile, the shock layer, which prop-
agates without change, i.e., by translation at a
constant velocity. In practice, the breakthrough
curves obtained with low-molecular-mass chemi-
cals which have reasonably fast mass transfer
kinetics on conventional high-performance liquid
chromatography (HPLC) columns satisfy these
requirements [9]. With proteins, however, shock
layers may be observed less often. There is little
information available on this issue at this time.

To obtain the asymptotic solution of the sys-
tem of equations Eqgs. 4-6 with the boundary
conditions in Eq. 7, we search for a moving
coordinate system &:

E=x— A7 8)

where A is constant. If this is possible, then the
solution of Egs. 4-7 can be expressed in the form

Clx,n=C(9 (9a)
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q(x,7)=q(é (9b)

The solution must also satisfy the following
boundary conditions:

,dc d
Cle=-=)=C', “Go¢==)=gz(¢=—=)=0

(10a)
dC d
Cle==)=C", GalE==)=gHE=2)=0
(10b)

After some mathematical rearrangements [3,6], it
can be shown that the steady-state breakthrough
profile is a solution of the following third-order
differential equation

A+Bd’C [ 1 (A+B)(1—A)]d2C
Pe-St 4¢*> L Pe + St d¢?
dC df
+(1—A)d§—F(ﬁ+A)d§—0 (11)
If the product Pe - St is much larger than unity,
it is possible to neglect the first term in Eq. 11.
This is a coupling term between the effects of
axial dispersion and the mass transfer kinetics.
When this simplification is legitimate, direct
integration of Eq. 11 from ¢ = —x to ¢, using the
first boundary condition (Eq. 10a), is possible.
This gives the following first-order differential
equation:

1 (A+p@a-a7dC \
e+ 52T 0 wie-o)
~FB+M)(f-f)=a6(cc' ) (12)

By applying the second boundary condition
(Eq. 10b), we obtain the reduced shock-layer
velocity in counter-current chromatography as

e
Azl ﬁFC._Cr=1_3K )
I _ pr 1
1-*-Flc]—fr tK
c-C

Thus, the actual migration velocity of the shock
layer is given by

u,=Au (14)

z

This velocity is also the migration velocity along
the column of all the intermediate concentrations
of the profile and especially of concentrations C*
and C'.

Note that the reduced shock-layer velocity in a
fixed bed [3,6-8] is

1 1
/\= fl_fr =1+K (15)
1+F
c'-C’

The only difference between these equations is
the factor (1 — BK) in Eq. 13 for counter-current
chromatography. This factor may be positive,
negative, or zero. Thus, in counter-current chro-
matography, the shock layer and the sample
wave may move forward in the direction of the
liquid phase or backward in the direction of the
solid phase or it may stay stagnant. Based on this
principle, the continuous separation of a binary
mixture can be done by choosing the value of 8
such that one component moves forward while
the other one moves backward. When the coun-
ter-current solid velocity is 0, then 8 = 0 and the
bed becomes a fixed bed. In this case, the factor
(1—-BK)=1 and Eq. 13 reduces to Eq. 15.

2.2. The shock-layer thickness

From Eq. 12 we can see that both the axial
dispersion (proportional to 1/Pe) and the mass
transfer resistance (proportional to 1/St) contrib-
ute to the shock-layer thickness, which is defined
as a function of £ The contributions of these two
phenomena, axial dispersion and mass transfer
resistance, to the first-order term of Eq. 12 are
additive, assuming that the product of the Peclet
and Stanton numbers is large enough to neglect
the second-order term, as it is often in practice.
Within the range of validity of this assumption,
we can calculate the shock-layer thickness, AgC).

Since we are interested in the part of the
concentration wave in which the main part of the
concentration change takes place, we define
boundaries C" and C"" such that C™ = 6C, and
c" =(1—-6C,, where #<0.5 is a numerical
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parameter. Usually, a value =0.05 is used.
Then, the shock-layer thickness is given by

.

P G“(C,C‘,C') dac (16)
cT

This equation is formally the same as the one
obtained for a fixed bed, except that the function
G(C,C',C") is different due to the existence of
the factor accounting for the velocity of the solid
phase in counter-current chromatography.

The function G(C,C',C") can be integrated in
the case of a Langmuir isotherm. The analytical
solution is

A 1-A
ae=+p| 5+ B ]

1 R*+R' (1 - )
X +
(1 LR Rr) ln 7

where R' =1/(1 + bC") and R" = 1/(1 + bC").
In the case of a fixed bed we have 8 =0 and
Eq. 17 reduces to

Al - /\)]
Ad= [ St
o1+ 1 R'+R‘1 (1-0) a8)
n
k,R'R" /R"—R' 6
This is the equation previously derived for the
shock-layer thickness in fixed-bed chromatog-
raphy, with a Langmuir isotherm [3,6-10]. The
only formal difference between Eqs. 17 and 18
arises from the presence of B in the former
equation. However, the reduced velocity of the
shock layer, A, in Eq. 17 is also a function of the
velocity ratio 8.
The actual thickness (SLT) in length units of

the shock layer migrating along the column can
be derived from Eq. 17. It is

I 1+K 1+
A"*[K~Pe(1+3) St(1+K)]
2+b(C'+C) . (1-6

*ThC =) ln( 8 )

(19)

2.3. Optimum velocity for minimum shock-layer
thickness

Since the shock-layer thickness is given by a
closed-form equation, it is straightforward to
derive directly from this expression the optimum
velocities of the liquid- and solid phase for
minimum shock-layer thickness.

Optimum liquid-phase velocity for a given B8

The shock-layer thickness (Eq. 19) is a function
of the liquid-phase velocity through the Peclet
and the Stanton numbers (Egs. 6d and 6e).
Furthermore, the apparent axial dispersion co-
efficient, D, in the Peclet number is also a
function of this velocity. Replace D, by the Van
Deemter relationship, 2D, = Au +2yD . Dif-
ferentiating Eq. 19 with respect to u after these
rearrangements is done, and setting the differen-
tial equal to zero gives the optimum velocity of
the liquid phase:

_1+K,[yD.k
ot 1+

u (20)
In this derivation, B is kept constant, which
means that the ratio of the liquid- and solid-
phase velocities remains constant. Introducing
U, into Eq. 19 gives the minimum value of the
shock-layer thickness:

Axlpin = %[ ;121112) 2 klln(y]
2+b(C'+CY) . /1-0
pc'—c) "\ 6 )

Note that the minimum shock-layer thickness

obtained decreases monotonically with increas-
ing value selected for B.

1)

Optimum solid-phase velocity for a given u

If we consider the liquid flow velocity, u, as
constant, St and Pe in Eq. 19 are also constant.
Changing the solid-phase velocity is the same as
changing the velocity ratio 8. The optimum value
of B for minimum shock-layer thickness is ob-
tained by setting equal to 0 the differential of the
SLT with respect to B:
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1+ K, (kD
Pop =1+ K) Pe 1= K -1

(22)

The corresponding minimum shock-layer thick-
ness is

N 2 2+b(C'+C) (1—9)
min = /Pe-st- K bC'—C) T\ 8

B 2\/72+b(c +C7) (1—0)

~LVKK p(c'- ) In (23)
The minimum shock-layer thickness depends on
the constant value selected for the velocity u
only through the apparent axial dispersion coeffi-
cient. It decreases monotonically with decreasing
value of u.

The shock layer (or the sample) may move
forward or backward in the column, depending
on the sign of A (Eq. 13), i.e., on that of 1 — BK.
Thus, it is interesting to examine in which direc-
tion the shock layer of minimum thickness

moves. Introducing B, into Eq. 13 gives

K-St
Ao =1 =\ =5, (24)
Eq. 24 shows that the reduced velocity, A, of

the shock layer of minimum thickness, corre-
sponding to the optimum value, B, ,, of B is
positive and the shock layer moves forward if
K < Pe/St. Conversely, the optimum solid-phase
velocity or B, cannot be obtained for a forward
moving shock layer with minimum thickness if
K > Pe/St. In this latter case, we can only obtain
a shock layer of minimum thickness for a back-
ward moving shock layer. Thus, if the values of
K, Pe, and St (hence u) are fixed, the optimum
value, B, can be achieved only in one direction
of shock-layer propagation.

Simultaneous optimization of u and B

In practice, we are not interested only in
changing u at constant 8 and 8 at constant u, but
also in the absolute optimum obtained by adjust-
ing simultaneously u# and either v or B, in order
to achieve the absolute minimum shock-layer
thickness possible. Examination of Egs. 21 and
23 shows that this condition is achieved for

u=0
B=o

. Dk
with u(l+ B =1+ K)\/—K- (25)

and the corresponding minimum shock-layer

thickness is

2./D_¥2 +b C + C 1-¢6
o n(50) e

Ao =TV kK

This solution is singular and impractical. A zero
liquid-phase velocity is meaningless in practice,
as it does not permit the production of an
extract. An infinite solid-phase velocity is also
meaningless. Despite this, this result affords a
useful guideline. The value of the constant ve-
locity ratio selected for the optimization of the
liquid-phase velocity should be as large as
reasonably possible. Conversely, the value of the
constant liquid-phase velocity chosen for the
optimization of the solid-phase velocity should
be as low as possible.

Nature of the steady state

In a column of fixed length, the shock will
move forward if the optimum conditions given by
Eq. 20 or 22 correspond to a positive optimum
value of A. Then, the shock will move along the
column until it reaches its exit. Similarly, if A, is
negative, the shock will move backward, toward
the liquid-phase inlet, and exit this way. When
the shock layer has left the column, the steady
state corresponds to the elution of a plateau of
constant concentration height. Since the shock
layer has disappeared, its thickness is no longer
meaningful and relevant. This is the case in true
moving-bed separation systems, in which case the
shock layer is useful only in considering the
transition to the steady state.

In simulated moving bed, however, the actual
column is divided into a series of individual
columns which are switched at a constant fre-
quency. Every time the switching valves are
actuated, a new, clean column is placed at the
column exit, so for all practical purposes, the
column length appears to be infinite and the
shock layer never reaches its end. During a
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switching period, the whole set of concentration
profiles, hence the shock layer, moves a distance
equal to one individual column length. There-
fore, the shock-layer concept appears to be most
germane to an understanding of the behavior of
SMB. The shock-layer thickness determines the
length of column occupied by the front and, thus,
the bed characteristics and the operating con-
ditions required to avoid that the shock layer
extends too far beyond the desorbent point and
extract points. The conditions of minimum shoc-
k-layer thickness will provide a good starting
point for the optimization of SMB operation.

2.4. Hlustrations and discussion

The system of equations Eqs. 5-7 was solved
numerically using a finite-difference method [3].
Calculations were made to illustrate the theoret-
ical results obtained above. The concentration
profiles along the column are plotted and dis-
cussed. The parameters used in the calculations
are: phase ratio, F=0.25; concentration step
change, C,=0, C, =25 mg/ml; Langmuir iso-
therm, a =2 and b = 0.02 ml/mg; the ratio of the
intermediate boundary concentration over the
boundary concentration, 8 = 0.05.

Forward moving concentration profiles

Forward propagation of the shock layer re-
quires that the shock velocity be positive. As
shown by Eq. 13, this means that 8 <1/K. Thus,
B should be small, the solid phase must move
relatively slowly with respect to the liquid phase.
We first examine the effect of the velocity ratio
B, then discuss the influence of the kinetic
parameters, apparent axial dispersion coefficient
and mass transfer kinetics rate constant, and the
values of the optimum velocities of both phases.

It is useful to point out at this stage that when
the composition of the feed stream injected in
the center of a chromatographic column is
changed, two concentration profiles are formed,
one in the front (direction of the liquid phase),
the other in the back (direction of the solid
phase). Depending on the specifics of the case,
one front is stationary, the other moves; one
front is a shock layer, the other is diffuse. In the

case of a Langmuir isotherm and 8<1/K, a
shock layer propagates in the same direction as
the mobile phase while a diffuse, stationary,
steady-state front is formed in the region z <0,
close to the origin, where the incoming mobile
phase strips the compound from the stream of
solid phase. The profile of this front could be
obtained by writing the balance between the
backward flux brought by the solid phase and the
forward flux caused by the liquid stream [12].
This study is not part of our goal. Fig. la
illustrates this situation and shows the two con-
centration profiles at three successive times. The
rear, stationary, diffuse front is at the origin. The
shock layer migrates in the positive direction.
The shock layer is thicker than the diffuse front
because of the self-sharpening effect arising in
the formation of steady zones [12]. Conversely,
when B > 1/K, the diffuse front moves backward,
in the direction of the solid phase and the shock
layer is stationary and positioned at the origin.
This is because, with a Langmuir isotherm, the
shock layer originates from the front shock of the
injection band, which is self-sharpening, while
the diffuse boundary originates from the rear
shock [4].

If the equilibrium isotherm follows an anti-
Langmuir behavior, the opposite results are
found. When B8 <1/K, a diffuse boundary moves
in the forward direction, with the liquid phase,
while a fixed shock layer is located at the origin.
By contrast, if 8> 1/K, a shock layer moves in
the backward direction, with the solid phase,
while a stable diffuse boundary remains located
at the origin. Fig. 1b illustrates this situation. The
rear part of the rear profile has not yet complete-
ly stabilized because this is an asymptotic solu-
tion and a certain time is needed to approach it
closely enough.

Influence of the ratio of the liquid and solid
velocities, B

Fig. 2a shows the concentration profiles along
the column at time 7=t/t;=1 for different
values of B: 0.0 (fixed bed), 0.5, 1.0, and 1.5. The
axial dispersion is characterized by the Peclet
number Pe =200 and the mass transfer resist-
ance by the Stanton number St = 1000. In this
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case, the mass transfer is faster than the axial
dispersion, and the latter is the limiting factor. In
Fig. 2a, the larger B, the faster the solid phase
migrates in the direction opposite to that of the
shock-layer propagation, and the slower the
concentration profile migration (see Eq. 13).
Also, the larger B, the smaller the shock-layer
thickness, Ax. This is in agreement with Eq. 19,
where St being large and Pe small, the first term,
inversely proportional to (1+ B), is dominant.
The values of the shock-layer thickness' calcu-
lated from Eq. 19 are respectively 0.29, 0.21, 0.17,
and 0.14 for =00, 0.5, 1.0, and 1.5, in good
agreement with those derived from the results of
the numerical calculations, which are 0.22, 0.18,
0.16, and 0.14, respectively.

Conversely, if the effect of mass transfer is
dominant compared to that of axial dispersion,
the opposite influence of B8 on the shock-layer
thickness is found. In Fig. 2b, Pe =1000 and
St =100. In this case, the larger B, the larger the
shock-layer thickness, Ax, in agreement with Eq.
19, in which the St term is proportional to 1 + 8.
The values obtained from numerical calculations
are respectively 0.14, 0.18, 0.22, and 0.26 for
B8=00, 0.5, 1.0, and 1.5, while the analytical
solution (Eq. 19) gives 0.16, 0.20, 0.25, and 0.30,
respectively.

Influence of axial dispersion and mass transfer
resistance

As in the fixed-bed case, axial dispersion and
mass transfer resistance have no influence on the
propagation velocity of the shock layer, which
remains the same as the velocity of the shock in
the ideal case [3,6-8]. They are responsible for
the transformation of the concentration shock
into a shock layer and they control the width of
the concentration profiles. Fig. 3a shows the
effect of changing the apparent axial dispersion
coefficient. The Peclet number Pe for the four
curves is respectively 100, 200, 300 and 500. The
corresponding shock-layer thickness obtained
from the analytical solution of Eq. 19 is 0.31,

' The numerical values given in the text for SLT are in units
of x (Eq. 6b), hence they are dimensionless.

0.17, 0.12, and 0.052, respectively, and 0.25, 0.16,
0.12, and 0.056 when derived from the numerical
calculations. The larger the Peclet number, i.e.,
the smaller the dispersion coefficient, the sharper
the concentration profile. Fig. 3b shows the
similar effect of the mass transfer kinetics,
through changes in the value of St, the Stanton
number. The larger St, the steeper the profiles.
The value of St is respectively 150, 250, 400 and
1000 for the four profiles in Fig. 3b. The shock-
layer thickness calculated from the solution of
Eq. 19 is 0.16, 0.12, 0.087, and 0.056, respectively,
while values of 0.17, 0.12, 0.085, and 0.052 are
obtained from the numerical calculations of these
profiles.

The similarity in the behavior of the shock-
layer profile and thickness when axial dispersion
and mass transfer kinetic resistance are changed
is in agreement with Eq. 19. It originates in the
symmetry between the influence of these two
phenomena found in Eq. 11. Neglecting the
coupling term in this equation causes their re-
spective contributions to the shock-layer thick-
ness to be simply additive.

Optimum velocities

The most important result derived from the
theoretical study made in this work is the calcula-
tion of the values of the optimum liquid- and
solid-phase velocities for minimum shock-layer
thickness, based on Eq. 19. This result is illus-
trated in Fig. 4, in which the concentration
profiles obtained at different values of the liquid-
phase velocity, for a constant phase velocity ratio
B are plotted. The values selected for B8 are 0.5
in Fig. 4a and 1.5 in Fig. 4b. Other parameters
used in Eqgs. 20 and 21 to calculate these profiles
are the column length, L =10 cm, the mass
transfer kinetic coefficient, k =1 s, the thermo-
dynamic constant, K =1/3, and the constants
A =0002 and 2yD_ =0.0005 cm’/s of the Van
Deemter’s equation.

With these parameters, the optimum liquid
velocity for 8 =0.5 is u = 0.024 cm/s (solid line
in Fig. 4a) and for B=1.5 it is u =0.015 cm/s
(solid line in Fig. 4b). In order to illustrate the
variations of the profiles around the optimum
velocity for minimum SLT, two other values of
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Fig. 3. Forward moving profiles. Influence of axial dispersion and mass transfer resistance. Axial profiles registered at time 7 = 1.0,
for 8=1.0. (a) Influence of axial dispersion (St =1000). Solid line, Pe =100; dotted line, Pe =200; dashed line, Pe = 300;
chain-dotted line, Pe = 500. (b) Influence of the mass transfer kinetic resistance (Pe = 1000). Solid line, St = 150; dotted line,

St = 250; dashed line, St = 400; chain-dotted line, St = 1000.

the liquid-phase velocity were chosen and the
corresponding profiles are also plotted in each
figure. These values are u = 0.014 cm/s (dotted
line) and 0.034 cm/s (dashed line) in Fig. 4a and
u = 0.0046 (dotted line) and 0.025 cm/s (dashed
line) in Fig. 4b. While it is obvious that the solid
lines in the two figures have the sharpest profiles,
it is also clear that the optimum is not sharply
defined.

Finally, Fig. 4c shows the profile obtained with
the optimum solid-phase velocity for the liquid-
phase velocity corresponding to Pe =200 and
St = 200. The optimum solid-phase velocity given
by Eq. 22 corresponds to 8 =0.63. No other
profile corresponding to a value of B either
larger or lower than the optimum is plotted for
comparison because such profiles would be too
close to the optimum one. This illustrates how
weakly defined the optimum is in this case.

Backward moving concentration profiles

When the solid phase moves quickly enough in
the direction opposite to that of the liquid-phase
flow, i.e., when B is large enough, A in Eq. 13 is
negative. Then, the propagation of the concen-
tration profile takes place in the same direction
as.the movement of the solid phase, i.e, in the
backward direction, instead of the forward direc-
tion, that of the liquid phase [4]. The condition to
have backward migration of the shock layer is
that 8>1/K. In this case, the study of the
propagation of the shock layer requires that the
column extends toward negative values of z, to
e.g., z = —L (Eq. 7b). The properties of the SLT
are similar to those discussed in the previous
section. The effects of axial dispersion and the
mass transfer resistance on the shock-layer thick-
ness are similar to those found in the case of the
forward moving profiles and do not need to be
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illustrated again here. The same is true for
optimum velocities.

In the previous case, the positive step change
C, =25 mg/ml at the inlet (x =0) of an initially
empty column (Eq. 7a) caused the formation of a
steady concentration front (or shock layer) mov-
ing in the forward direction. Under the same
Langmuir isotherm, the same step change causes
now a diffuse profile to migrate in the forward
direction, as shown in Fig. 5, in which the axial
concentration profile is plotted at two different
times, 7 = 0.5 and 1.0. The other parameters used
in these calculations are Pe =200, St =, and
B =4.0. It is obvious that no shock layer with
constant pattern will be formed. This is due to
the thermodynamic properties of the column
with the Langmuir-type isotherm, and is ex-
plained in detail in our previous paper [4].

25

However, a shock layer propagating in the
backward direction will be observed in the case
of a convex downward isotherm, e.g., an anti-
Langmuir isotherm (e.g., with b = —0.02 ml/mg).
In this case, it is the rear of the rectangular
injection of quasi-infinite width which is self-
sharpening [4], and it moves in the backward
direction, with the solid phase. The front of this
injection tends to move forward, with the liquid
phase, but it is diffuse because of the negative
curvature of the isotherm and it remains station-
ary, at the origin, as illustrated in Fig. 1b. Figs. 6a
and 6b show, at time 7=0.5, the shock layers
obtained for different values of 8: 2.0, 2.5, 3.0,
and 3.5. Fig. 6a corresponds to Pe =200 and
St ==, Fig. 6b to Pe = 100 and St = 100 and gives
profiles which are much less steep than those in
Fig. 6a.
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Fig. 5. Case of backward moving profiles. Forward moving diffuse concentration profiles. Concentration step change at the inlet
(x = 0) of an empty column. A backward moving shock layer is formed. A forward moving constant pattern profile (shock layer)
cannot form; the profile is dispersive and broadens with increasing time. Solid line, time = 0.5; dotted line, time 7= 1.0. Peclet

number Pe =200 and Stanton number Sz = o,
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Similarly, a shock layer can be formed and
propagate in the forward direction in the case of
a Langmuir isotherm if a negative concentration
step is performed, with a column initially satu-
rated at a constant concentration C, =25 mg/ml
Than C'=23.75 and C" =1.25 mg/ml (8 = 0.05).
The reason is that, in this case, low concen-
trations move faster in the forward direction than
high concentrations, so concentrations pile up
forward and form a shock layer [4]. Fig. 7 shows
the shock layers obtained for 8 =4.0, 4.5, 5.0,
and 5.5 at time 7= 1.0, with Pe = 200 and St = «.

The influence of B on the shock-layer thick-
ness is illustrated in Figs. 6a and 7. The SLT
decreases with increasing 8 because of the domi-
nance of the contribution of Pe to the SLT.
However, the converse effect is seen in Fig. 6b
because, in this case, the contribution of St in Eq.
19 is more important than that of Pe.

3. Conclusion

The results presented in this work open a new
approach to the investigation of the behavior of
SMB and of the optimization of its operating
conditions. The shock layer must remain com-
pletely included inside the volume of an indi-
vidual column when the steady state is reached.
Further results on the investigation of this prob-
lem will be reported soon [13].

Acknowledgements

This work has been supported in part by Grant
CHE-9201663 of the National Science Founda-
tion and by the cooperative agreement between
the University of Tennessee and the Oak Ridge
National Laboratory. We acknowledge support of



200

25

T

20
—

15
—

Concentration ¢ (mg/mL)
10

5
Y

\
l
\_
|
|
|
|
|
|
|
l_
\

[y
.
.
'
[
'
[
.
v
v
'
'
.
.
]
'
'
i
.
'
'
'
.
.
.
A
»
.
l
1
'
.
y
’
.
'
'
:
]
.
'
]
)
'
[
]
.
]
1l
]
[
[
'
'
.
.
[l
.
'
.
'
'
1
»
[l
)
'

4 o \' T - T
~1.0 -08 -0.6 -04 -0.2 0.0

Axial position x )]

Fig. 7. Case of backward moving profiles. Shock layer
observed with a Langmuir isotherm and a purge step (con-
centration decreasing from 25 to 0 mg/ml). A constant shock

layer is formed. 7= 1.0, Pe =200, and St = x, Values of 8=
4.0, 4.5, 5.0, and 5.5.

our computational effort by the University of
Tennessee Computing Center.

List of symbols

ab first and second parameters of the Lang-
muir isotherm

parameter in Van Deemter’s equation

liquid-phase concentration of the com-

ponent

left boundary concentration

right boundary concentration

axial dispersion coefficient

molecular diffusion in Van Deemter’s

equation

phase ratio

function defined by Eq. 12

mass transfer coefficient

=

-

2
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retention factor at infinite dilution (= Fa)
constant defined by Eq. 13

column efficiency

Peclet number (=ul/D),)

solid-phase concentration

intermediate parameter [=1/(1 + bC)]
Stanton number (=kL/u)

time

liquid-phase flow velocity

shock-layer propagation velocity
solid-phase flow velocity

dimensionless axial position in the col-
umn (=z/L)

z axial position in the column

SRR

o < RS
&

Greek symbols

B ratio of the solid- and liquid-phase veloci-
ties (=v/u)

Y constant in Van Deemter’s equation

A reduced propagation velocity of shock
layer

T dimensionless time (=ut/L)

0 coefficient defining the thickness of the
shock layer [=(C'— Cc™)/(C' - C") =(C™ -
cHnc' - cn)

¢ coordinate transform parameter in Eq. 8
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